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On Inverse Estimation in Linear Regression 

National Heart and Lung Institute, Bethesda, Maryland 

A procedure suggested by Krutchkoff (1967) for inverse estimation in linear 
regression is compared with the classical procedure from other points of view than that 
taken by Krutchkoff, i.e. comparative mean square error. In particular, comparisons 
are made on the basis of iiclosenessJJ in estimation (Pitman, 1937), consistency (in 
a setting where this concept is relevant), and mean square error of the relevant 
asymptotic distributions. It is found that, for large samples, Krutchkoff's estimate is 
superior in the sense of "closenessJJ if values of the independent variable are restricted 
to a certain closed interval around the mean of the independent variates in the experi- 
ment and inferior elsewhere. However, the width of this interval varies inversely as the 
product of the absolute value of the standardized slope (i.e, scaled by the error stand- 
ard deviation) and the standard deviation of the independent variables used in the 
experiment. As a practical matter the parameter tends to be large so that the interval 
where the Krutchkoff estimate is superior will be trivially small. In  addition large 
values of this product parameter imply that the two estimates being compared are vir- 
tually indistinguishable. Coupling these latter remarks with the fact that the classical 
procedure allows an exact confidence interval for the parameter under estimate while 
the Krutchkoff procedure does not, suggests the classical estimate is to be preferred 
using the "closenessJ1 criterion. If one uses the criterion of mean square error applied 
to the relevant asymptotic distribution, one reaches conclusions similar to the above, 
except that the interval of superiority of the Krutchkoff estimate is no longer trivially 
small even a t  best. However, the mean square error criterion fails to take into account 
the fact that the estimates are correlated and so should be considered an intrinsically 
less appropriate criterion than closeness. We also find that, in circumstances where 
the concept is applicable, Krutchkoff's estimate is not consistent whereas the classical 
estimate is; Krutchkoff's estimate can be trivially modified so that it is consistent 
but will then tend to never be better in the sense of closeness than the classical 
estimate. 

The usual assumptions and procedure for inverse estimation in linear re-
gression can be described as follows. One has a sample (y; ,xi), i = 1,2, .. . ,n, 
12 2 2, where the xi are known constants, a t  least two of which are distinct, 
and the y; are independent and N ( a  + @xi ,a). The parameters (a,P )  are 
estimated by least squares as (a, b) and, given a new y, Y say, the corresponding 
x, X say, is estimated by 8 = (Y - a)/b.  In  a recent paper [2] Krutchkoff has 
suggested that instead of using the estimated regression of y on x to estimate X, 
one use the estimated regression of x on y (by least squares) to estimate X as 
say 2,= c + dY. In  the above: 
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where 

Kruthchkoff concludes on the basis of a Monte Carlo investigation (in which 
values of Ibl < .001 were replaced by =t .001 as appropriate) that the mean 
square error (MSE) of 2,is uniformly less than that of 8.The Monte Carlo 
work involved 10,000 repetitions and considered both normal and non-normal 
error distributions. As recently pointed out by E. J. Williams [5], Krutchkoff's 
results are hardly surprising since the MSE of 8 (untruncated) is infinite; the 
truncated version of 2 considered by Krutchkoff in his simulation would not 
be expected to seriously alter any comparison with alternative estimates. As 
Williams emphasizes, an estimate which is a constant-and thus clearly irrelevant 
to the issue would be superior to 2 in the MSE sense; to make the point another 
way, a random drawing from any distribution with finite variance would pro- 
vide a better estimate than 8 in the RlSE sense. Williams concludes that the 
AISE is an inappropriate criterion, that the finite variance of 2, seems to be 
its only merit and thus dimisses zkas an estimate of X.  One can not quarrel 
with the conclusion that the MSE is an inappropriate criterion. One might 
examine further, however, what merits Zkhas, as compared to 2, according 
to other intuitively reasonable criteria than MSE. 

We pursue this question in the following discussion. I t  should be pointed 
out that Krutchkoff is aware that 2 has an infinite MSE [3] but apparently 
does not think this fact makes his comparisons in [2] of dubious value. 

The criteria we consider under the usual regression assumptions, as outlined 
above are: 

1. The relative "closeness" of 2 and zkto X. Here "closeness" is in the 
sense of Pitman [3]. That is, 2 is a closer estimate than is zkif, for a11 X, 

2. Consistency. This, of course, is only relevant when Y, a, b are all based 
on large samples. 

3. Mean square error of relevant asymptotic distributions. It should be 
pointed out here, that the MSE, in general, fails to take into account the cor- 
relation between the estimates and thus is intrinsically less meaningful for 
comparing estimates than the "closeness" concept. 

We obtain both large and small sample results on closeness; for simplicity 
of presentation we indicate below only the large sample results. Somewhat 
similar results for small samples are given in the body of the paper. We shall 
also assume, for convenience only, that f is fixed for all sample sizes. 
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To give our results in a compact way we need a modest amount of notation. 
Thus, let 

We shall also suppose that our "new Y" is in fact an average of N observations 
each with variance a2 and correspondingly use a notation PN and denote by 
Z(N) the classical estimate of the corresponding X. We also note that i t  follows 
easily from (1.1) that the Krutchkoff estimate is given by 

where 

and gc = a + bxi  . Finally it is useful to define a generalized Krutchkoff esti- 
mate by 

where 

Our analysis is in terms of 2?,(N, M) and Z ( N ) .  
Our asymptotic results are then as follows: 
1. For given p(#O), 6, N, M, pu, 

where @(u)= (&)-I J Y ,  (exp - t2/2) dt. I t  is clear from this result that 
Tk(N1M) will be a closer estimate than Z(N) for a closed interval on X ,  de-
pending on N, M, p, u, and 2. I t  is also clear that if Ipu,[ is very large and 161 = 
ru, , then for every fixed r, N, M, the two estimates are indistinguishable in the 
sense of closeness; in fact, from (1.4) and (1.5), it is apparent that 2 ? b ( ~ ,  M) 
will tend to be very nearly Z(N) so that as a practical matter there will be very 
little to choose between the two estimates. We also observe that if M = N and 
N is large then, for I fipa,l large and 161 = TU, , the estimates will again be 
indistinguishable. In  short, if Y is well determined, the absolute standardized 
slope (lpl) is large, or the values of the independent variable are widely dis- 
persed, the estimates are indistinguishable. We note too that if M << N and N 
is large, the interval in which Z,(N, M) is superior becomes very small. 

2. For given P(#O), 6, a:, M = N and both n and N large, Z(N) 
and Br(N, N) both converge in probability to X; however, if M is fixed and N 
is large Z,(N, M) converges in probability to (1 - R,)z + R,X where R, = 
Mp2a,2/(1 + MpZa,2). 



3. For given p(#O), U: , M, N, 8, and n large, the MSE of fib(^, M )  is less 
than the MSE of 2 ( N )  providing 161 < l/(l/Np2) + 2Mu:/N. This calcula- 
tion refers to the asymptotic distributions of z ( N )  and TL(N,  M). 

The above results are proved in Section 2. We also give in that section some 
tables which are helpful in assessing whether the Krutchkoff estimate is pref- 
erable in practice and an illustrative example. Finally, i t  should be noted that, 
with slight modifications due to differences in assumptions, conclusions similar 
to the above apply to estimation of relative potency in bioassay. 

Before proceeding with our analysis it is convenient to reduce T(N) and 
Tk(N, M) by a series of transformations. Thus, let 

so that 

We first observe that for n, M, N and u,(n) fixed it follows from (2.2) that 
RM3 1as IPuz(n)( -+ co for almost a11 u and . Thus, with all other param- 
eters fixed if the regression slope is very large and/or u,(n) is very large Z(N) 
and f;tk(N, M) are virtually identical with, in fact, z k ( N ,  M ) reducing to z ( N ) .  
In  other words the better our design for estimation of slope [u,(n) large] and 
the more intrinsically precise our calibration (IPl/u large) the less difference it 
malres which of the two estimates of X we use. We would expect these desid- 
erata to obtain in many practical problems and should therefore be inclined to 
use Z(N)  since, from the standpoint of point estimation, there would be little 
difference between the estimates while Z(N)  allows an exact interval estimate 
of X via Fieller's Theorem and g k ( ~ ,  M) does not. 

But now let us consider what can be said about the two estimates when 
Ipu,(n) I is not large; we note that this assumption does not necessarily preclude 
the possibility that one of I p (  and u,(n) is quite large. We also note that this 
assumption will seldom be relevant in practice. 
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We first address ourselves to the question of closeness and thus consider the 
evaluation of 

p,(X) = Pr  ( IfZk(N,M )  - XI < I ~ ( N ) - XI 1 (2.3) 

the probability for given X that f Z k ( ~ ,  M )  deviates less from X than does 
2 ( N ) .  Clearly, we can write (2.3) as 

P,(x) = ~r ([J?,(N, 111) - x ] ~< [B(N) - XI2]. (2.4) 

Then, using the definitions (2.2) and letting T = X(N) - Z we can write (2.4), 
after some reduction, as 

We note that reduction of (2.4) to (2.5) involved division by (1 - R,v) so that 
the following analysis requires 1 - R,, # 0 and hence excludes the case 
Ipfl=(n)l+ 

We first observe that if 6 = O(X = 5)) then, from (2.5)) P,(5) = 1. Hence, 
either 2 , ( ~ ,  M) is a closer estimate than 2 ( N )  or there are some values of X 
for which P,(X) < +. To proceed further we first suppose that 6 > 0. In  such 
case a straightforward decomposition of (2.5) shows that 

Then, using the definition of T and observing that u and v are independent 
N(0, 1)variates, we find that 

= ( P ) f l + ( P - P n ) )  (2.7a) 

where @ is the cumulative distribution function for given argument of a N(0, 1) 
variate. 

Similarly, taking account of the fact that R M  is a random variable depending 
on x,?,-,as well as u, we find we can write Pr  { T < -26/(1 + Rx)}  as 

where c = di u,(n), ~ ( u )  is a N(0, 1) density, P(~:-,) is the density of a x:-, 
variate and 

Now let us also suppose p > 0 and let 6 + a.Then (2.7a) approaches 
@(-PI/; a,(n)). To evaluate (2.7b) we observe that @[g(u)] will be zero if the 



sign of g(u) is negative and will be unity otherwise. Thus, the second integral 
of (2.7b) is clearly zero as 6 --t m .  In  the first integral @[-g(u)] will approach 
unity as long as u < (1 - ~ , ~ ) p d ia,(n)/2. Thus, although an explicit evalua- 
tion appears impossible for general values of the parameters, it is clear that the 
first integral of (2.7b) will (for some 0 depending on the particular values of the 
various parameters, with 0 < 0 < 1) be of the form ,@(- Bp l/n a,(n)/2) -
@(-P& 4%)). 

I t  follows that Pc(X) > 3, for all X 2 2 and p > 0. An analysis along the 
lines of the above for the cases (p < 0, 6 > 0), (p < 0, 6 < 0), (p > 0, 6 < O) ,  
shows that P,(X) depends only on the absolute values of p and 6. I t  follows 
that Zk(N,  M)  is not a closer estimate of X than is T(N) .  However, i t  is clear 
that for values of X near 2, P,(X) > 3. Since one may reasonably argue that 
inverse estimation should only be used when the X's to be estimated can be 
expected to be within the range of the xi used in the calibration experiment, 
the above remark suggests Zk(N,  M) may be preferable to Z(N)  for X re-
stricted as indicated above. To decide the merits of this proposition requires a 
closer analysis of P,(X). Due to the non-linearity introduced by RM , if nothing 
else, this appears most difficult for small samples. One might expect that large 
sample considerations would be somewhat relevant. Thus, assuming limn,, 
a,(n) = a, (finite) and all other parameters fixed, inspection of (2.7a) shows 
that as n --t a (2.7a) approaches @(- lp61 fi). (Note we are now assuming 
the dependence of Pc(X) on the absolute values of p and 6 as remarked above.) 
To evaluate (2.7b) as n + a we observe from (2.2) that Raw approaches 
p2a;/(M-' + p2a;) for almost all u and xi-, .Utilizing this fact in (2.8) leads us 
to conclude that g(u) approaches fi lp61/(1 + 2Mp2a:) for almost a11 u and 

. We are thus led to conclude that, as n 4 m, with N, M, p, 6, fixed and 
lim,,, a,(n) = a, (finite), PC(X) approaches 

We note that if M = N and N is at  least 0(n) then from (2.2)RM +1as n 4 a 

for almost all u and x:-, so that one is again in the situation where one cannot 
differentiate between Z,(N, M) and 2 ( N ) .  We observe that (2.9) is monotone 
decreasing in 161 approaching zero for large 161, all else being equal. The most 
interesting case would seem to be M = N in which case putting 161 = ru, and 
A = fi l p l  a,, (2.9) becomes @(-rA) + @[-rA/(l If we set this + 2 ~ ~ ) ] .  
latter quantity equal to i,we can use implicit function theory to deduce that 
the solution of this equation is first decreasing in A somewhat past A = 4, 
with the behavior for larger A not very clear. Numerically, two computations 
appear of interest. One of them is based on the notion that inverse estimation 
should only be used when X is within the range of x's in the calibration experi- 
ment. This suggests taking r = 2.5, on the supposition that 5u, would encom- 
pass most of the experimental range, and computing PC(? & 2.5 a,) from (2.9) 
as a function of A. If Pc(2 2.5 a,) is a decreasing function of A, then as long 
as P,(Z f 2.5 a,) > .5 it is reasonable to prefer T,(N, N). The other compu- 
tation which appears worthwhile is to compute the value of T ,  as a function of A, 
which is such that (2.9) (with M = N) is equal to .5. With this latter informa- 
tion one can make a judgement, for other ranges than 3 f 2.5 a, as to which 
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statistic is preferable. Presumably one would estimate A from the known N ,  
a,2(n) and an estimate of p as 

Table I gives the asymptotic value of P,(Z =t 2.5 a,) for selected values of 
A = fi l p l  a%. Table I1 gives, for selected A, the value of r, r(.5) say, suck1 
that the asymptotic value of P,[Z f r(.5)a,] = 3.The solution for r(.5) can be 
carried out by a simple algorithm. Specifically, let w = rA; then from 

we have 

and 

where k ( p )  is the standardized normal deviate exceeded with probability p. 
From (2.12) 

and 

Thus, to compute Table 11, we first select w > 0, compute @(w) - 4 
and k j @(w)- 31; if w > h ( @ ( w )- 4 )  we compute A and r from (2.13); if 
w < k ( @(w)- 3 )  we choose w' > w and compute @(wt)- 4 and k ( @(wt)- 4 )  
and proceed as above. 

P,(Z d.5~ , ) ,the Probability that IXk(N, N )  - XI < I ~ ( N )- XI ,  
for IX - 21 = 6.5uZ,as a Function of A = <N lp/ UZ. 



It is evident from Table 1 that although P,(Z f 2.5 u,) is not a decreasing 
function of A, once it gets below .5, it remains below .5. We also see that for 
A 5 .29, Tk(N,  N) is always to be preferred over T(N). 

Table I1 indicates that r(.5) is a decreasing function of A; moreover, i t  is 
easy to show that P , ( X )  as a function of r and A is decreasing in r for fixed A. 
Thus, if [-r(.5)uZ + 5, 5 + r(.5)uZ] covers the range expected for X, one should 
Use 2k(N, N ) .  

The above remarks concerning Tables I and I1 do not take into account the 
magnitude that A is likely to be in practice. First we note that N will almost 
always be unity so that we may write A = 161 u,/u. I n  general (u,/u) >> 1and 
we would ordinarily demand that be quite large before we would seriously 
consider a linear relationship for inverse estimation. With these points in mind 
our tables (especially Table 11) and the monotonicity of 

in r strongly suggest that in practice Z,(N,N) will rarely be preferable to Z(N).  
We illustrate this with an example from Bowker and Lieberman [I]. 

Bowker and Lieberman give an example of a calibration problem in which 
one has a number of measurements (y) of calcium oxide when large amounts of 
magnesium are also present and the corresponding (known) amounts (x) of 
calcium oxide. The data and relevant summary statistics are as follows 

n 

2 22.5 22.8 S,, = c (xi - 2)' = 427.9 
t-1 


3 25.0 24.5 S,, = 438.889, 

4 28.5 27.3 S,, = 430.69, 

8 37.0 37.1 S,., = .82088. 

We note, in our example, that the estimates of slope, b and d, are very close 
and that if, as would usually be the case, N = 1, we would estimate A, using 
(2.10), as about 8. For this value of A it is clear from Tables I and 11, that 
z k ( l ,  1) would be better in the sense of closeness only for values of X very near 
to 5 in units of a, . In terms of MSE of the asymptotic distribution, 2,(1, 1) 
mrould be better than Z(1) if, approximately 
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TABLE
I1 

Solutions of % ( - r A )  & % [ - r A / ( l  + $A2)]= .6,i n  r for Selected Values of A. 

or about 1.42. Thus Z k ( l ,  1) appears in a much better light in terms of the 
MSE criterion than in terms of the closeness criterion. However, as remarked 
earlier, the closeness measure seems clearly the more meaningful criterion. 

We go on now to indicate briefly the line of argument leading to the other 
conclusions given in the summary. 

It follows from (2.2) for N,  M , 3 and X fixed, that, as is well known, k ( N )  
is asymptotically N(X, l / f i  Ipl) and that Zk(N,  M) is asymptotically 
N[(1 - R,)z + R,X, R,/- lpl]. An easy calculation then shows that for 
the asymptotic distributions: 

I t  follows from (2.14) that 

MSE [ Z ~ ( N ,  lVI)] < MSE [k(N)]  

as indicated in the summary. 
We also see from (2.2) that if N is O(n) then as n -+ a ,  Z(N)  converges, for 

every fixed v, to X; it follows from this that T(N)  converges in probability to X. 
By the same type of argument T,(N, ill), for fixed M ,  converges in probability 
to Z + R,(X - 3). Thus, Zk(N, ilif) is not consistent. However, if we also take 
M to be O(n) as well, then, as n -+ a ,  RM converges to unity in probability, so 
that a modified Krutchkoff estimate converges in probability to X but also (see 
2.9) is never a closer estimate than Z ( N ) .I t  might be added here that choosing 
M = N can be made plausible as follows. Take X to have a normal prior with 
mean 5 and variance u2,(n), and suppose tliat 7 , given X has a normal distri- 
bution with mean cr + pX and variance uZ/N. Suppose also that a and p are 



known. I t  is then easy to see that a Bayes estimate of X is of the form (1.4) 
with k ( N )  = (BAT- a)/P and corresponding to (1.5) with M = N ,  

Thus, the modified Krutchkoff estimate is of the form of the Bayes estimate 
above with certain parameters replaced by sample estimates. 
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