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TECHNOMETRICS Vor. 12, No. 4 NovemBeEr 1970

On Inverse Estimation in Linear Regression

Max HALPERIN

National Heart and Lung Institute, Bethesda, Maryland

A procedure suggested by Krutchkoff (1967) for inverse estimation in linear
regression is compared with the classical procedure from other points of view than that
taken by Krutchkoff, i.e. comparative mean square error. In particular, comparisons
are made on the basis of “closeness” in estimation (Pitman, 1937), consistency (in
a setting where this concept is relevant), and mean square error of the relevant
asymptotic distributions. It is found that, for large samples, Krutchkoff’s estimate is
superior in the sense of ““closeness” if values of the independent variable are restricted
to a certain closed interval around the mean of the independent variates in the experi-
ment and inferior elsewhere. However, the width of this interval varies inversely as the
product of the absolute value of the standardized slope (i.e. scaled by the error stand-
ard deviation) and the standard deviation of the independent variables used in the
experiment. As a practical matter the parameter tends to be large so that the interval
where the Krutchkoff estimate is superior will be trivially small. In addition large
values of this product parameter imply that the two estimates being compared are vir-
tually indistinguishable. Coupling these latter remarks with the fact that the classical
procedure allows an exact confidence interval for the parameter under estimate while
the Krutchkoff procedure does not, suggests the classical estimate is to be preferred
using the “closeness” criterion. If one uses the criterion of mean square error applied
to the relevant asymptotic distribution, one reaches conclusions similar to the above,
except that the interval of superiority of the Krutchkoff estimate is no longer trivially
small even at best. However, the mean square error criterion fails to take into account
the fact that the estimates are correlated and so should be considered an intrinsically
less appropriate criterion than closeness. We also find that, in circumstances where
the concept is applicable, Krutchkoff’s estimate is not consistent whereas the classical
estimate is; Krutchkoff’s estimate can be trivially modified so that it is consistent
but will then tend to never be better in the sense of closeness than the classical
estimate.

1. INTRODUCTION AND SUMMARY

The usual assumptions and procedure for inverse estimation in linear re-
gression can be described as follows. One has a sample (y;,z,),t = 1,2, --- , n,
n 2> 2, where the z; are known constants, at least two of which are distinct,
and the y; are independent and N(a + Bz;, ¢). The parameters (a, 8) are
estimated by least squares as (a, b) and, given a new y, Y say, the corresponding
z, X say, is estimated by X = (¥ — a)/b. In a recent paper [2] Krutchkoff has
suggested that instead of using the estimated regression of y on z to estimate X,
one use the estimated regression of z on y (by least squares) to estimate X as
say X, = ¢ + dY. In the above:
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a = § — bZ, ¢ = — dj,

n

b= Y@ — -9/ 2 @ — o (L.1)

i=1 t=1

i=Ye-2w -9/ Fw -,

i=1

where

g = ;yi/n: z= ‘; z;/n.

Kruthchkoff concludes on the basis of a Monte Carlo investigation (in which
values of |b| < .001 were replaced by = .001 as appropriate) that the mean
square error (MSE) of X, is uniformly less than that of X. The Monte Carlo
work involved 10,000 repetitions and considered both normal and non-normal
error distributions. As recently pointed out by E. J. Williams [5], Krutchkoff’s
results are hardly surprising since the MSE of X (untruncated) is infinite; the
truncated version of X considered by Krutchkoff in his simulation would not
be expected to seriously alter any comparison with alternative estimates. As
Williams emphasizes, an estimate which is a constant_and thus clearly irrelevant
to the issue would be superior to X in the MSE sense; to make the point another
way, a random drawing from any distribution with finite variance would pro-
vide a better estimate than X in the MSE sense. Williams concludes that the
MSE is an inappropriate criterion, that the finite variance of X, seems to be
its only merit and thus dimisses X, as an estimate of X. One can not quarrel
with the conclusion that the MSE is an inappropriate criterion. One might
examine further, however, what merits X, has, as compared to X, according
to other intuitively reasonable criteria than MSE.

We pursue this question in the following discussion. It should be pointed
out that Krutchkoff is aware that X has an infinite MSE [3] but apparently
does not think this fact makes his comparisons in [2] of dubious value.

The criteria we consider under the usual regression assumptions, as outlined
above are:

1. The relative “closeness” of X and X, to X. Here “closeness” is in the
sense of Pitman [3]. That is, X is a closer estimate than is X, if, for all X,

Pr{lX — X| < |% - X|} > &

2. Consistency. This, of course, is only relevant when Y, a, b are all based
on large samples.

3. Mean square error of relevant asymptotic distributions. It should be
pointed out here, that the MSE, in general, fails to take into account the cor-
relation between the estimates and thus is intrinsically less meaningful for
comparing estimates than the ‘“closeness’’ concept.

We obtain both large and small sample results on closeness; for simplicity
of presentation we indicate below only the large sample results. Somewhat
similar results for small samples are given in the body of the paper. We shall
also assume, for convenience only, that % is fixed for all sample sizes.
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To give our results in a compact way we need a modest amount of notation.
Thus, let

p=8le, 6=F—X, oln) =n"" Y, (xz; — X)°, limo2(n) = o(finite).

i=m]1 n—o

We shall also suppose that our “new Y’ is in fact an average of N observations
each with variance o* and correspondingly use a notation ¥y and denote by
X (N) the classical estimate of the corresponding X. We also note that it follows
easily from (1.1) that the Krutchkoff estimate is given by

(1 — R)z + RX(N) (1.2)
where

2 2
R=db=— @ 1.3)

and §; = a + bz, . Finally it is useful to define a generalized Krutchkoff esti-
mate by

XN, M) = (1 — Ru)% + RuX(N) (1.4)
where
nb’o2(n)

> 4 — 9/M + nbo)

i=]

Ry = (l 5)

Our analysis is in terms of X,(N, M) and X(N).
Our asymptotic results are then as follows:
1. For given p(#0), 6, N, M, po,

lim Pr {|X.(V, M) — X| < |Z(V) — X|}

n—o

= &(—|pd| V'N) + #[—|o3| VN/( + 2Mp*s?)],

where ®(u) = (V2r)™" [*. (exp — #2/2) dt. It is clear from this result that
X(N, M) will be a closer estimate than X (N) for a closed interval on X, de-
pending on N, M, p, o, and Z. It is also clear that if |po,| is very large and |8] =
ro. , then for every fixed r, N, M, the two estimates are indistinguishable in the
sense of closeness; in fact, from (1.4) and (1.5), it is apparent that X, (N, M)
will tend to be very nearly X () so that as a practical matter there will be very
little to choose between the two estimates. We also observe that if ¥ = N and
N is large then, for |v/N po,| large and |§| = ro, , the estimates will again be
indistinguishable. In short, if Y is well determined, the absolute standardized
slope (|p|) is large, or the values of the independent variable are widely dis-
persed, the estimates are indistinguishable. We note too that if ¥ << N and N
is large, the interval in which X,(V, M) is superior becomes very small.

2. For given p(#0), 6, o2, M = N and both n and N large, X(V)
and X,(N, N) both converge in probability to X; however, if M is fixed and N
is large X,(N, M) converges in probability to (1 — R.)Z + R.X where R, =
Mp*a?/(1 + Mp*s?).




730 M. HALPERIN

3. For given p(#0), o2, M, N, 5, and = large, the MSE of X.(N, M) is less
than the MSE of X(N) providing |8| < V/(1/Np?) + 2Mcs2/N. This calcula-
tion refers to the asymptotic distributions of X(N) and X,.(N, M).

The above results are proved in Section 2. We also give in that section some
tables which are helpful in assessing whether the Krutchkoff estimate is pref-
erable in practice and an illustrative example. Finally, it should be noted that,
with slight modifications due to differences in assumptions, conclusions similar
to the above apply to estimation of relative potency in bioassay.

2. DERIVATIONS AND DIScUSSION

Before proceeding with our analysis it is convenient to reduce X(N) and
X.(N, M) by a series of transformations. Thus, let

U = Q;;B-) \/ﬁaz(n)

_ [(Yy — 4 — BX — )] / Nn
v = - ¥ +n( 2.1

E (y: — ’!?i)z = 02Xi—2

=]

so that
¢ (v\/N];ri_ n_ pﬁ\/ﬁ)o,(n) ) ‘
W =T Varw +a
v = [u + P\/; 0':(771)12 L (2.2)
-2/ M) + [u + pVn o))
N +n
Rl (v — p8V'n)o.(n)
2.V, M) = 5 + [< N _° ) ]

[u + pV7 o.(n)]

We first observe that for n, M, N and o.(n) fixed it follows from (2.2) that
Ry — 1 as |po,(n)| — « for almost all u and x2_, . Thus, with all other param-
eters fixed if the regression slope is very large and/or ¢,(n) is very large X (V)
and X, (N, M) are virtually identical with, in fact, X,(N, M) reducing to X (V).
In other words the better our design for estimation of slope [o,(n) large] and
the more intrinsically precise our calibration (|8|/c large) the less difference it
makes which of the two estimates of X we use. We would expect these desid-
erata to obtain in many practical problems and should therefore be inclined to
use X(N) since, from the standpoint of point estimation, there would be little
difference between the estimates while X (V) allows an exact interval estimate
of X via Fieller’s Theorem and X,(N, M) does not.

But now let us consider what can be said about the two estimates when
|po.(n)] is not large; we note that this assumption does not necessarily preclude
the possibility that one of |p| and ¢.(n) is quite large. We also note that this
assumption will seldom be relevant in practice.
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We first address ourselves to the question of closeness and thus consider the
evaluation of

P.(X) = Pr {|R.(V, M) — X| < |X(N) — X|}, (2.3)

the probability for given X that X,(N, M) deviates less from X than does
X (N). Clearly, we can write (2.3) as

P.(X) = Pr {[X.(N, M) — X’ < [X(@V) — XJ*}. (2.4)

Then, using the definitions (2.2) and letting 7' = X (N) — & we can write (2.4),
after some reduction, as

26 )
— 1 . 2.
P.(X) Pr{T(T + 1+ R, > 0} (2.5)
We note that reduction of (2.4) to (2.5) involved division by (1 — E,) so that
the following analysis requires 1 — R, # 0 and hence excludes the case

lpo.(n)| — .

We first observe that if 6 = 0(X = %), then, from (2.5), P.(£) = 1. Hence,
either X, (N, M) is a closer estimate than X (N) or there are some values of X
for which P.(X) < 1. To proceed further we first suppose that § > 0. In such
case a straightforward decomposition of (2.5) shows that

28
14+ Ry

Then, using the definition of 7 and observing that « and v are independent
N(0, 1) variates, we find that

P.(X) = Pr{T < — }-i- Pr{T > 0}. (2.6)

Pr{T >0} = Pr {v > pé\/Nn_lA_rn} Pr {u > —pVno.(n)}

nN

-{—Pr{v(p& N+n

= o(—p3y/ = ooy o.() + 9oty s o= oV o), @70

where & is the cumulative distribution function for given argument of a N (0, 1)
variate.

Similarly, taking account of the fact that R, is a random variable depending
on x2_, as well as u, we find we can write Pr {T < —256/(1 + R,)} as

Pr{u < —pVno,m))

[ st au + [ stgnet dufpocd e, 270
where ¢ = pV/n 0,(n), ¢(u) is a N(0, 1) density, p(x_,) is the density of a x2_,
variate and

glu) = [%Z) + @1 - RM)p\/E] VN*L/EXZ;L Y 2.8)

Now let us also suppose p > 0 and let 6 — «. Then (2.7a) approaches
®(—pV/n 0,(n)). To evaluate (2.7b) we observe that ®[g(u)] will be zero if the
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sign of g(u) is negative and will be unity otherwise. Thus, the second integral
of (2.7b) is clearly zero as § — . In the first integral ®[—g(u)] will approach
unity as long asu < (1 — Ruy)p V'n o,(n)/2. Thus, although an explicit evalua-
tion appears impossible for general values of the parameters, it is clear that the
first integral of (2.7b) will (for some 6 depending on the particular values of the
various parameters, with 0 < 8 < 1) be of the form ,®(—6p\/n 0.(n)/2) —
®(—pV'n 0.(n)).

It follows that P.(X) » 1, for all X > & and p > 0. An analysis along the
lines of the above for the cases (p < 0,5 > 0), (p < 0,5 <0), (p > 0,05 <0),
shows that P.(X) depends only on the absolute values of p and 4. It follows
that X,(N, M) is not a closer estimate of X than is X (V). However, it is clear
that for values of X near z, P.(X) > %. Since one may reasonably argue that
inverse estimation should only be used when the X’s to be estimated can be
expected to be within the range of the z; used in the calibration experiment,
the above remark suggests X.(N, M) may be preferable to X(N) for X re-
stricted as indicated above. To decide the merits of this proposition requires a
closer analysis of P.(X). Due to the non-linearity introduced by R , if nothing
else, this appears most difflcult for small samples. One might expect that large
sample considerations would be somewhat relevant. Thus, assuming lim,..
o,(n) = o, (finite) and all other parameters fixed, inspection of (2.7a) shows
that as n — « (2.7a) approaches &(—|ps| v/N). (Note we are now assuming
the dependence of P.(X) on the absolute values of p and 6 as remarked above.)
To evaluate (2.7b) as n — o we observe from (2.2) that R, approaches
p’a/(M™" + p’s?) for almost all u and x?_, . Utilizing this fact in (2.8) leads us
to conclude that g(u) approaches /N |pd|/(1 + 2Mp%?) for almost all u and
x2_s . We are thus led to conclude that, as n — o, with N, M, p, §, fixed and
lim,.. o,(n) = o, (finite), P.(X) approaches

8[—|p3| VNI + 3[—[pd| VN/( + 2M p’s?)] (2.9)

We note that if 4 = N and N is at least 0(n) then from (2.2)R),y — 1lasn— o
for almost all 4 and x2_, so that one is again in the situation where one cannot
differentiate between X,(N, M) and X(N). We observe that (2.9) is monotone
decreasing in |8| approaching zero for large |§], all else being equal. The most
interesting case would seem to be M/ = N in which case putting [5| = 7o, and
A =+/N |p| 0., (2.9) becomes &(—rA) + F[—rA/(1 + 2A%)]. If we set this
latter quantity equal to %, we can use implicit function theory to deduce that
the solution of this equation is first decreasing in A somewhat past A = %,
with the behavior for larger A not very clear. Numerically, two computations
appear of interest. One of them is based on the notion that inverse estimation
should only be used when X is within the range of z’s in the calibration experi-
ment. This suggests taking r = 2.5, on the supposition that 5¢, would encom-
pass most of the experimental range, and computing P,(Z =+ 2.5 ¢,) from (2.9)
as a function of A. If P.(£ & 2.5 o,) is a decreasing function of A, then as long
as P.(f & 2.5 ¢,) > .5 it is reasonable to prefer X,(N, N). The other compu-
tation which appears worthwhile is to compute the value of r, as a function of A,
which is such that (2.9) (with M = N) is equal to .5. With this latter informa-
tion one can make a judgement, for other ranges than £ + 2.5 ¢, as to which
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statistic is preferable. Presumably one would estimate A from the known N,
o2(n) and an estimate of p as

Vin — 2b (2.10)

\}§;<yf—-yoz

Table I gives the asymptotic value of P, (£ & 2.5 o,) for selected values of
A = /N |p| o, . Table II gives, for selected A, the value of r, r(.5) say, such
that the asymptotic value of P.[E & r(.5)a,] = .5. The solution for 7(.5) can be
carried out by a simple algorithm. Specifically, let w = rA; then from

O(—w) + d[—w/(1 +2A%)] = .5, w>0, (2.11)
we have
P[—w/(1 4 24%)] = d(w) — }

and
T oar = koW — ) (2.12)

where k(p) is the standardized normal deviate exceeded with probability p.
From (2.12)

w
and A=mew—a‘l/vq 2.13)
w/A.

r =

Thus, to compute Table II, we first select w > 0, compute ®(w) — 2
and k{®(w) — 3};if w > k{®(w) — 4} we compute A and r from (2.13); if
w < k{®(w) — 3} we choose w’ > w and compute &(w’) — % and k{®(w’) — 1}
and proceed as above.

TaBLE I

PA{Z + 2.502), the Probability that |X«(N, N) — X| < |R(N) — X]|,
for |X — Z| = 2.50., as a Function of A = /N |p| 0.

A Pc(x;f-_e.Scx) A Pc(§i2.50x)
.01 .980 2.0 .289
.05 .901 2.5 .322
.10 .8ok 3.0 .37
.15 LT1h 3.5 . 366
.20 .630 k.o .381
.25 .555 5.0 403
.29 .502 6.0 A1
.30 .489 7.0 430
.bo .383 8.0 438
.50 .308 9.0 ks
1.00 .209 10.0 451
1.50 .2L8 15.0 BTy
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It is evident from Table 1 that although P.(Z & 2.5 ¢.) is not a decreasing
function of A, once it gets below .5, it remains below .5. We also see that for
A < .29, X,(N, N) is always to be preferred over XWV).

Table IT indicates that r(.5) is a decreasing function of A; moreover, it is
easy to show that P.(X) as a function of r and A is decreasing in r for fixed A.
Thus, if [—7(.5)e, 4+ %, T + r(.5)0.] covers the range expected for X, one should
use X (N, N).

The above remarks concerning Tables I and II do not take into account the
magnitude that A is likely to be in practice. First we note that N will almost
always be unity so that we may write A = || ¢./0. In general (¢./0) > 1 and
we would ordinarily demand that |8| be quite large before we would seriously
consider a linear relationship for inverse estimation. With these points in mind
our tables (especially Table IT) and the monotonicity of

&(—rA) + B[—ra/(1 + 24%)]

in r strongly suggest that in practice X.(N, N) will rarely be preferable to X (V).
We illustrate this with an example from Bowker and Lieberman [1].

Bowker and Lieberman give an example of a calibration problem in which
one has a number of measurements (y) of calcium oxide when large amounts of
magnesium are also present and the corresponding (known) amounts (x) of
calcium oxide. The data and relevant summary statistics are as follows

t Zu(mg)  y(mg)

1 20.0 19.8 n =10, %= 31.1,

2 22.5 22.8 S.. = ; (x; — %)° = 427.9
3 25.0 24.5 S,, = 438.889,

4 28.5 27.3 S., = 430.69,

5 31.0 31.0 b=8.,/8.. = 1.0065,

6 33.5 35.0 d = 8./8,, = 9813

7 35.5 35.1 o= Vn'S..,

8 37.0 37.1 S,.. = .82088.

9 38.0 38.5

10 40.0 39.0

We note, in our example, that the estimates of slope, b and d, are very close
and that if, as would usually be the case, N = 1, we would estimate A, using
(2.10), as about 8. For this value of A it is clear from Tables I and II, that
X.(1, 1) would be better in the sense of closeness only for values of X very near
to Z in units of o, . In terms of MSE of the asymptotic distribution, X.a,
would be better than X (1) if, approximately

X-—-z ’1 .
! < a-I-Z

7
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TasrE 11
Solutions of ®(—rA) &= [—rA/(1 + 24%)] = .5, in r for Selected Values of A.
& r(.5) A r(.5)
.01 67.4h 2.500 0.66
.05 13.61 3.005 0.59
.101 6.82 3.501 0.54
.151 L.56 4. 000 0.49
.198 3.53 4,501 0.46
.302 2.42 5.000 0.43
Lol 1.92 6.003 0.37
.502 1.63 T.002 0.34
1.000 1.08 8.006 0.30
1.500 0.88 9.005 0.28
2.006 0.75 10.006 0.26

or about 1.42. Thus X(1, 1) appears in a much better light in terms of the
MSE criterion than in terms of the closeness criterion. However, as remarked
earlier, the closeness measure seems clearly the more meaningful criterion.

We go on now to indicate briefly the line of argument leading to the other
conclusions given in the summary.

It follows from (2.2) for N, M, & and X fixed, that, as is well known, X ()
is asymptotically N(X, 1/4/N |p|) and that X,(N, M) is asymptotically
N[ — R.)Z + R.X, R./V/N |p|l. An easy calculation then shows that for
the asymptotic distributions:

MSE [X(V)] = 1/Np’ (2.14)

MSE [X,(N, M)] = RZ/Np* + (1 — R.)’ &
It follows from (2.14) that
MSE [X.(N, M)] < MSE [X(V)]
if

X — &| < V1/Np* + 2Ms2/N,

as indicated in the summary.

We also see from (2.2) that if N is O(n) then as n — o, X(N) converges, for
every fixed v, to X; it follows from this that X (V) converges in probability to X.
By the same type of argument X,(N, M), for fixed M, converges in probability
to # + Ro(X — ). Thus, X,(N, M) is not consistent. However, if we also take
M to be O(n) as well, then, as n — «, R, converges to unity in probability, so
that a modified Krutchkoff estimate converges in probability to X but also (see
2.9) is never a closer estimate than X (). It might be added here that choosing
M = N can be made plausible as follows. Take X to have a normal prior with
mean & and variance ¢%(n), and suppose that ¥y given X has a normal distri-
bution with mean « + BX and variance ¢°/N. Suppose also that « and 38 are
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known. It is then easy to see that a Bayes estimate of X is of the form (1.4)
with (V) = (¥» — «)/8 and corresponding to (1.5) with M = N,

2
v= oo/ [5 + soim |
Thus, the modified Krutchkoff estimate is of the form of the Bayes estimate
above with certain parameters replaced by sample estimates.
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